
———
30

In other words, we have found that in the case that I c J, the output 0 will satisfy the
specIfication for the quotient program.

Let us return our attention to the Initial goal 2,

1~~y .J+zand0�z and z<j .

- Recall that we have a second transformation rule

(u+1).v~~ u .v+v

for the multiplication function. Applying this rule to goal 2 yIelds

I 11.1~~y 1 .j +j +z and 0~~z a n d z <j y~+i
4

where Yi is a new variable. Here, the unifying substitution is -

0 (y . .y+ l ; u . - y 1; v — j] ;

applying this substItution to the output entry z produced the new output y~+i.

The transformation rule

u = v+w ~

applied to goal 11 yields

I 12. 1—f . y1.j + z a n d o �z a n d z <j (,~+i

Goal 12 Is a precise Instance of the initial goal 2,

isy .J+zan d0~~z and z.c J,

obtained by replacing the input I by I-f. (Again, the replacement of the dummy variab le ,
by ,

~
Is not significant.) Ther ifors, the following induction hypothesis is formed:

.~~~~~~~~~~

.

-- .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘ 
..,

-~~~~~~~ 
i: _ _  

- 

~~~ ~:k 
~~~~~~~~~~~~~~~~~~~~~~~~



___________ -~ ~- - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ,- .

31

13. if (u 1, 1SR) <(I , f)
then ifO ~ u1 and 0 <  u2

then u 1 • dlv(u 1, u2) ’u 2 + h(u 1, u2) and
0~ h(u 1, u2) and h(u 1, u2) .c

Here, h is a Skolem function corresponding to the variable z, and < is an arbitrary well-
founded ordering.

By applying GA-resolution between goal 12 and the induction hypothesis, we obtain the
goal

14. true and dtv(t—j , j ) + l
not (If (1—f , f) <(I , j )

then if 0 � I—f and 0 <j
then false)

Here, the unifying substitution Is

O s [ u 1 i- i—j ; u2 i- f; y 1 i- dlv(l—j , fr ~ z.- h(l-.j , J) ]

and the eliminated subexpression Is

i—f - dlv(i—j, j)’j + h(l -.j, j) and 0 s h(l—j, j )  and h(1—j , J) c f .

Note that the su bstitution to the variable 
~ 

has caused the output entry y~+l to be
changed to div(i—j , j )+1. The use of the induction hypothesis has Introduced the rec’irslve

- 

call dlv(i—j, J) into the output.

Goal 14 reduces to

I 16. (i—f, J) <(I , j )  and 0 s i—f and 0 cj )  div(I—j , j) -.- l J
The particul ar ordering ( has not yet been determIned; however , it Is chosen to be the
orderi ng on the first component of the pairs , by appl ication of the transformation rule

(u 1, u2) ‘
~ rn (v 1, u,) ~ true If it 1 s~ and 0 ~ si1 and Os v1.

• ‘ ~~ 

- 
.‘ ;~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

- .  ‘. pN~ 
_ _ _ _ _ _ _  

I

~~~~~~ 
..~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~--~~

r

32

A new goal Is produced:

16. I — J < i and 0 s i—j and 0~~i and diu (i—j , j) + 1
0~~i—J a n d 0 c J

Note that the conditions of the transformation rule caused new conjuncts to be added to
the goal.

By application of algebraic and logical transformation rules, and GA-resolution with the
assertion 5, 0 ~ 1, and assertion 6,0 cf , goal 16 is reduced to

I I 17. f~~i div(I—j, f)+ l

In other words, we have learned that in the case thatf ~ I , the output di v (1-f,j) +l satisfies
the specification of the dlv program. On the other hand, in deriving goal 10 we -learned
that in the case that I <j , 0 is a satisfactory output. Assuming we have the assertion 4

• u � v o r v < u ,

we can obtain the goal

I 18. nol(i ci) dtv(i—j , J) + 1

by GA-resolution. -

The final goal

19. lrue I f I < f
then 0
else div(i—j , j) .s. I

can then be obtained by GG-resolution between goals 10 and 18.- The conditional
expression has been formed because both goals have a corresponding output entry.
Because we have developed the goal trut and a corresponding primitive out put entry , the
derivation Is complete. The final program

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- . ‘ YL ~ ~~~~~~~~~~~~~~ ~~

-

~~~ ~~~~~~~~~~~

--

~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~


__
-

--- -

4A
-

L dlv(1,j) <. If ~ -

then 0
else div(I—f , f) +1

is obtained directly from the final output entry.

Note that the same proof could be used to derive a remainder program as well as a
quotient program. The specification of the remainder program

t
rem(I , j) (. find z such that

for some ,,
I . y .j + z ànd 0~~z a n d z cj

where 0 s I and I
)

yields the same initial assertion and goal as the quotient program, except that the initial
output entry is z instead of y. The succeeding output entries are changed accordingly.
The finai remainder program is then

rem(i , j) (. if I <J
then i -

else rem(l—f , J) .

We used steps fr om the derivation of this program to illustrate the formation of recursive
calls in the section on mathematical induction.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~q-~
--
~ 

::. 
~~.. ,, - ~~~~~~~~~~~~~~~~~~~~~~~~~ -.; --



34

ANOTHER COMPLETE EXAMPLE; Finding the Last Element of a List

In this example, we apply the same techniques to derive a list-processing program. Our
discussion here will be a bit more brisk than in the preceding section.

Our task Is to construct a program las t(l) to find the last element of a nonempty list 1.
Our specification is

last(l) (. find z such that
for some y, ~ y c >[z ]

where I • (].

Recall that u<>v is the result of appending two lists U and v, (w] is the list whose sole
element is w, and [] denotes the empty list. Again, we omit type conditions, such as
Is IIst (l) , from our discussion.

Our initial sequent is

assertions goals output

1.l~~ (] - 4
2 .l—y c> tz ) Z

Let us assume that our subject knowledge Includes the assertion

J 3 . u - u  I I I
and the transformation rules

(]c> u .p u

(u ’v) c>w

w u.s * a,. (] and head(w) s it and tall (w) v

(u] us u’(]

tail(u) <L it true if U 
~ 

(] .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
F ~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



p — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

35

The first two rules constitute the definition of the append function <>; the third expresses
the uniqueness of the decomposition of a list into a head and a tail; the fourth provides the
meaning of the abbreviation [it]; and the final rule defines a well-founded ordering <~ over
the lists.

The first transformation rule

[ ] c > u u s u

can be applied to the initial goal 2,

g

the unifying substitution is

0 [y . . . [) ;  u .-. (z) )

and the resulting goal is

4.I..[zJ z

ApplyIng the two rules

(u] us u ’(3

and

w a u.s us w .  (~ and *tad(w)s uand :aSl (w).z,

yields 
-

I 5.1. D and head(l).z z
L - and tail(l) — C]

Applying GA-resolution between goal 5 and assertion 1, 1 • (3, produces the goal

6. head(l). x and taIl(1) • z

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~ 

:

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

-

.

- -

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
‘

~~~~~~~~~



36

- Applying GA-resolution agaIn~ between goal 6 and assertion 3, it it, produces the goal

- - 
- 

- 1 7. tail(l) — U I heo4(I) I
Here, the unifying substitution is

1 0 ( z  head(l) ; it

and the eliminated subexpresslon is h~ad(l) ~ head(l). Note that the substitution has
caused the output entry z to be replaced by head(1) . We have learned that in the case
where taU(l) Is empty the output hcad(l) satisfies the specification for last.

Returning to the initial goal 2,

1 ~y <>[z ] ,

we can apply the second transformation rule

(u ’v) <>w us u ’(v<>w)

- to the subexpresslon y.o{z). The unifying substitution is

0 [ u  b y ; ;  V 
~~y2; w [z ] ;  y 

~YI ’Y2 ]

- and the resulting goal is

I 8. 1 — y 1 ’(y2 c> Cz]) I z

Applying the transformatIon rule

w ~ u•v us w. (] and head (w)s uand l.zU (w) . v

yields

1 
‘ 9. 1 • (] and head(i) — and tall(1) . . I I

J 
,

::i~. ~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~ ~~ ~ - , ,  ,.-, ~~~~~~~~~~~~~~~~~~ ~~~!- - 7~~
I -

~~~, 
~.- ~ 4 ‘

~~~~~ ~~~~~

- a ~~ ~~~~ ~~~

t

-

A

-

Next, applying GA-resolutIon between goal 9 and assertion 1, 1 • [], and then between the
resulting goal and assertion 3, u u, we obtain

io. 1a411) - y2 >[z] z

Note that goal 10 Is a precise instance of our initial goal 2, 1 = y<>[z], obtained by
replacing ! by laI!(I); therefore, the following induction hypothesis is formed:

I

11. if u < 1
then l f u s (]

[f/zen u - g(uk>[Iast(u)]

Here , < Is an arbitrary well-founded orderIng and g is a Skoiem function corresponding to
the variable y.

We can now apply GA-resolution between goal 10 and the Induction hypothesis,
assertion 11. The unifying substitutIon is

0 1 u .- tatl(1), Y2 ~— g(:aU(1)) ; z last(tall(1))]

and the eliminated subexpression is

tail(1) g(tail(l)) <> [l a st (taU (l))];

we obtain

12. true and last (tail(l))
no:(if taU(!) <1

then if tail(l) • Ci
then false)

which reduces to

I 13. taiI(l) I and iaU(I) • C] Iast(ta4I(1))

I
— ~~ ~~~~~~~

~t—

-

38

Note that the unifying substitution caused the introduction of the recursive call last(taLl(1))
in the output entry.

The rule

tail(u) <L U us true if it • (]

suggests taking the well-founded ordering <to be <L; we derive

I] 1 4. 1 — () and tail(1) • C] J last (tail (1))

which reduces to

1 5. tail(l) • C] I lasI ((ail(I)) I
after GA-resoluion with assertion 1, 1 - [].

We have deduced that in the case where tail(1) • [], the output !ast(taIl (!)) satisfies the
specification; on the other hand, from goal 7 we know that in the case where :all(I) •
head(!) is a satisfactory output. Combining these two goals by GG-resolution, we obtain

16. true If tail (l) — (]
then hcad(l)
else last (tall(I))

Because we have derived the goal true with a corresponding primitive output entry, our
derivation Is comp lete. The final program, extracted from the final output entry, is

las:(!) <. If tall(1) (3
then head(l)
else last (tail(l)).

Note that the same proof could be used to derive a program fron:(l) to remove the last
element from a nonempty lIst 1. The specification for/ro,U is

front(1) (. find s such that .
-

-

for som e z I • ,<4x3 - -

- ~~~~~~ - - - .~~~~~~
- -:----

I -I-—— ~~~~~~~~~~~~~~~ - — -----—

~~~~~~~~~~~~~~~~~ 
.
~~~~~ 

~~~~~~~~~~~~~
r _~~-~ ~-~t



___________ — •,-.~~~~~~~ _‘~-,• --I- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~ —~ - -

where I • [] .
I

- This specification yields the same initial assertion and goal as the last program, except
- 

that the InItial output entry is, instead of z. The succeeding output entries are changed
accordIngly, and the final program derived Is

front(l) <. If taIl(!) • []
then [3
else head(I) ’fron: (uzil(l)) .

-
-

-

- _____________ ______ 
_ _ _ _  

~~1



40

APPLICATION TO PROGRAM TRANSFORMATION

Our program synthesis techniques can be applIed as well to the transformation of
programs. In this application, we are given a clear and concise program for a certain task ,
which may be Inefficient; we derive a more efficient equivalent program, which may be
neither clear nor concise (see BurstaIl and Darlington [1977)).

To transform a given program, we regard the program itself as the specification of a
new program. For example, suppose we are given the program

rev( l) <i i f l~~[]
then ( 3
else rev(tall(l)) <> [head(1))

where lslist(l)

for reversing the order of the elements of a list I. This program is Inefficient , for it
requires many recursive calls to rev and to the append program <>. The specification for 4
the tra nsformed program revnew(!) Is then

revnew(l) <. find z suc h that z - rev(I)
where Isllst (l) .

The Initial sequent Is thus

assertions goals output

1 . is llsg (I)
2 .z — rev( 1)  z

We admit the new transformation rules

rev (u) us [)  I f u - ( ]

and

rev(u) us rev(tail (u)) c> [head(u)] if it — C];

these rules are obtained directly from the given program.

In such a derivation , the given program rev is not regarded as a primitive construct of

-
- - - -

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~L ~~~ - W~~~~~~~~ ~~
- -‘~ 

— ______



-~~~~~~ - —-- ~~~~~~~~~~~~~~~~~ - - - - -~~- -~~ - -~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~--—-. -.. - -- —

41
(

th . target langu age. For efficiency purposes, we may also choose to regard the append

- 

function .c> as nonprimltlve.

Applying our synthesis techniques, we can obtain the followIng new program for
- reversing a list ;

revne~(I) (. revnea,2(l. (]),

where

revnew2(j , m) <~ ill 1]
then m
else revnew2(tail(l) , head(l) .m) .

The derivation Involves the formation of auxiliary procedures and the use of generalization,
- which we do not discuss in this paper.

The new program Is more efficient than the given program ,-ev(l); it Is essentially
iterative and does not employ the expensive c> operation. In general, however, unless we
Introduce additional efficiency criteria, we cannot ensure that the program we obtain is
more efficient than the given program.

~~~ 
_ _

_ _ _

-4
_______________________________ _ _ _ _ _ _ _

~~~~~~~~ k~~~~~~~ I ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ J~ 
_

~~~~
‘

~~~~~ • : ,,

_ _ _ _  
~~~~~~~~


42

-

~~~~ 

. COMPARISON WITH THE PURE TRANSFORMATION-RULE APPROACH

Recent work (e.g. , Manna and Waldinger [1977), as well as Burstall and Darlington
[1077)) does not regard program synthesis as a theorem-proving task , but instead adopts
the basic approach of applying transformation rules directly to the given specification.
What advantage do we obtain by shifting to a theorem-proving approach, when that
approach has aiready been attempted and abandoned?

The structure we outline here is considerably simpler than, say, our implemented
synthesis system DEDALUS. That system required special mechanisms for the formation of
conditional expressions and recursive calls, and for the satisfaction of “conjunctive goals”
(of form “find z such that R 1(r) and R2(z) ”) . It relied on a backtracking control structure ,
that required It to explore one goal completely before attention could be passed to
another goal. in the present system these constructs are handled as a natural outgrowth
of the theorem-proving process. In addition, the foundation is laid for the application of
more sophisticated search strategies , in which attentIon is passed back and forth freely
between several competing assertions and goals.

Furthermore, the task of program synthesis always Involves a theorem-proving
component , which is needed, say, to prove the termination of the progran being
constructed, or to establish the input condition for recursive calls. (The Burstall-Darlington
system is interactive and relies on the user to prove these theorems; DEDALUS
incorporates a separate theorem prover). If we retain the artificial distinction between
program synthesis and theorem proving, each component must duplicate the efforts of the
other. The mechanism for forming recursive calls will be separate from the induction
principle; the facility for handling specifications of the form

find z such that R 1(z; and R2(z)

will be distinct from the facility for proving theorems of form

for some z , R , (z) and R2(x);

and so forth. By adopting a theorem-proving approach, we can unify these two
components.

The two complete examples In this paper have been chosen to Illustrate the
advantages of the new approach ; both were beyond the capabi lities of the DEDALUS
system.

I — 

_ _  

j
—

I 
— - 

~~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -fl----

_ _ _ _

_ _ _ _ _

p

- ~~~~~~~~~

43

Theorem proving was abandoned as an approach to program synthesis when the
development of sufficiently powerful automatic theorem provers appeared to flounder.
However, theorem provers have been exhibiting a steady Increase In their effectiveness ,
and program synthesis is one of the most natural applications of these systems.

ACKNOWLEDGMENTS~ We would like to thank John Dariington, Chris Goad, Jim King, Neil
Murray, Niis Niisson, and Earl Sacerdoti for valuable discussions and comments. Thanks are
due also to Patte Wood for aid In the preparation of thi s manuscri pt.

REFERENCESZ

Biedsoe, W. W. (1977], Non—resolution theorem provi ng, Artificial Intelligence Journal, Vol.
9, pp. 1-35.

Boyer, R. S. and J S. Moore [Jan, 1975], ProvIng theorems about LISP functions , JACM , Vol.
22 , pp. 129-1 44,

Burstall , R. M. and J. Dariington [Jan. 1977], A transformation system for developing
recursive programs , JACM , Vol. 24, No. 1, pp. 44-67.

Darlington , J, I., (1968], Automatic theorem proving with equality substitutions and mathematical
induction , Machine IntellIgence 3, Edinburgh, Scotland, pp. 113-127.

Green , C. C. [May 1969], Application of theorem proving to problem solving, Proceedings of
the International JoInt conference on Artificial Intelligence, Waehington DC, pp.
219-239.

-

Hew itt, C. (Apr , 1971), DescrIption and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot , Ph.D. thesis , MIT ,
Cambridg e, MA. -

Manna , Z. and R, Waldinger (Nov. 1977], Synthesis: dreams us programs , Technical Report,
Computer Science Dept., Stanford University, Stanford, CA and Artificial
Intelligence Center , SRI International, Menlo Park , CA.

Murray, - N. (1978), A proof procedure for non—clausal first—order logic , Technical Report ,
Syracuse University , Syracuse , NY.

$ ~
‘

~~~~~~~
‘ 

_ _ _ _ _ _ _ _



44.,

~I.

Nelson , G. and D, C. Oppen (Jan. 1978], A simplifier based on efficient decision algorithms ,
Proceedings of the Fifth ACM Sympo sium on Princi ples of Programming Languages ,
Tuscon, AZ, pp. 141-160.

Nilsson , N. J. [1971] , Problem—solving methods in artificial Intelli gence, McGraw-Hill Book Co.,
New York , NY [pp. 165-168] .

Nllsson , N. J. (Aug. 1977], A production system for automatic deduction , Technical Report , SRI
International, Menlo Park, CA.

Robinson , J. A. [Jan. 1966], A machine—oriented logic based on the resolution principle , JACM ,
Vol. 12, No. 1, pp. 23-41.

Waidinger , R. J. and R. C. T. Lee (May 1969] , PROW: a step toward automatic program
writin g, Proceedings of the International Joint Conference on Artificial
intelligence, Washington, DC, pp. 241-262.

Wilkins, 0. (1973), QUEST——a non—clausal theorem proving system , M.Sc. thesis , University
of Essex, England.

I

e

I

N:

~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _


